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Abstract
Topological defects in a foam, either isolated (disclinations and dislocations) or in pairs, affect
the energy and stress, and play an important role in foam deformation. Surface Evolver
simulations were performed on large finite clusters of bubbles. These allow us to evaluate the
effect of the topology of the defects, and the distance between defects, on the energy and
pressure of foam clusters of different sizes. The energy of such defects follows trends similar to
known analytical results for a continuous medium.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Soft materials, such as aqueous foams, block copolymers and
colloidal emulsions exhibit ordered structures which present
a wide variety of complex geometries and topologies. These
ordered structures are not perfect and may contain several types
of defects.

Defects can be classified into two types: topological
defects, which engender no change in area, and geometrical
defects, which do. Dislocations and disclinations are included
in the first class, and it is these that we consider here. The
study of defects is important because defects in the crystal
structure are responsible for many of the physical, chemical
and mechanical properties of a material. For example, the
plastic deformation of metals occurs due to the motion of
dislocations [1]. For elastoplastic materials, an extensive
analysis has been made to find exact analytical solutions for
all characteristic fields of screw and edge dislocations [2],
wedge [3] and twist [4] disclinations.

In two dimensions (2D), crystal structures are based
upon the hexagonal lattice (or its dual, the triangular lattice).
This perfectly ordered structure has been studied extensively,
particularly in the context of 2D foams (i.e. monolayers of
bubbles), but the situation in which the lattice contains a
small number of topological defects has been rather neglected.
Exceptions include experiments [5–7] and simulations [8],
with an emphasis on determining the coarsening behaviour of
the foam over time. In contrast, rather more authors consider
single geometrical defects [9–12].

A 2D foam can be viewed as a cellular pattern for which
the surface energy is the total perimeter multiplied by the
value of surface tension (assumed here to be constant). The
ordered state is hexagonal [13] and a disclination is thus a non-
hexagonal bubble, while the elementary dislocation (i.e. that
with the smallest Burgers vector) is a pair of 5- and 7-sided
bubbles [14, 15]. We next survey results for the strain energy
of disclinations and dislocations before describing simulations
of 2D foams containing them and comparing the two.

2. Strain energy of disclinations and dislocations

2.1. Disclinations

A useful way to think about disclinations in a solid is provided
by the Volterra construction. Consider a torus of material
lying in the xy-plane: disclinations are produced by inserting
(P > 0) or removing (P < 0) a wedge of angle Pπ/3 in
the torus [16, 17], where we denote by P the strength of the
disclination. To accommodate the wedge, the torus has to
be cut from the outer edge to the hollow core. Disclinations
are classified according to the relative motion of the two cut
surfaces: rotation around the axis of the torus will produce
a wedge disclination [18], whereas rotations around axes
perpendicular to the axis of the torus will produce twist
disclinations. In what follows only 2D wedge disclinations are
considered.

Disclinations are rarely observed in 3D structures such
as metals because they are energetically very costly [18], but
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are seen occasionally in foams [6, 7] and they often appear
in block copolymers [19] and liquid crystals [16, 18, 20–22],
particularly in nematic liquid crystals. The latter typically
consist of elongated molecules that tend to be oriented in the
same direction, but are positionally disordered. In a nematic
liquid, the energy of a wedge disclination is

w = π K P2 ln

(
ρ

a

)
, (1)

where ρ is the distance between the dislocation line and the
container wall, a is the molecular dimension and K is the
average elastic constant [16].

In addition, disclinations may occur in pairs with opposite
signs. They tend to be coupled at short distances since this
reduces long-range distortion [20]. In a nematic liquid the
energy per unit length of line, w, for two wedge disclinations
of opposite strengths +P and −P a distance d apart is

w = 2π K P2 ln

(
d

a

)
. (2)

Compared to equation (1) a factor of two is introduced and ρ

is replaced by the distance d between the two defects [16, 20].
The strain field due to a disclination can be evaluated

within an elastic continuum model that assumes a strain field
with radial symmetry [23]. When applied to a hexagonal 2D
foam, the strain energy density w, i.e. the energy per unit area
per unit length, of a disclination cluster of strength P was
found to be

w = G

36
P2, (3)

where G is the shear modulus [23]. For a given distance r
from the core to the external part of the defect, the strain
energy is thus proportional to P2, and independent of r . In
a 2D incompressible medium, the elastic modulus E satisfies
E = 4G, and for a 2D hexagonal lattice

G = 1

2
√

3

γ

a0
, (4)

where a0 is the edge length of a hexagonal bubble with area A
(i.e. A = 1

2 3
√

3a2
0) and γ is the film tension [23].

2.2. Dislocations

Dislocations in a continuous medium can likewise be
understood in terms of the Volterra construction. The torus is
cut again from the outer edge to the hollow core; any motion
of the two cut surfaces that has no rotational component yields
a dislocation. The motion can be in one of three directions:
if it occurs along one of the two axes that are perpendicular
to the axis of the torus, edge dislocations are obtained. If the
motion is parallel to the axis of the torus, it defines a screw
dislocation [18]. Only edge dislocations will be considered in
this work.

Morral and Ashby [24] analysed dislocations in detail,
including the pair of 5- and 7-sided cells in a cellular structure.
Dislocations in foams have been observed since the pioneering
work of Bragg and Nye [25], who noted them in bubble rafts.

5/7 dislocations were also observed in other types of liquid
foams [26] and are responsible for the propagation of plastic
deformation in foams [26, 27].

The energy of a dislocation can be described by the
well-known equations of the elastic strain field of an edge
dislocation [23, 28–30]. The strain energy density w of a
dislocation with Burgers vector B in an incompressible foam
cluster is

w = G

4π
B2 1

r 2
. (5)

Note that w decreases with the distance r from the core as
r−2 [23]5.

The interaction energy of two edge dislocations with
opposite signs a distance d apart in the same glide plane can
be adapted from [28, 29]:

w = G

π

(
B√
A

)2

ln

(
d√
A

)
, (6)

where A is the bubble area. When two dislocations of opposite
signs are in the same glide plane, they attract each other to
reduce their total elastic energy. That is, the dislocations act as
dipoles and the strain energy changes with ln(d) and tends to
zero as d approaches the bubble size from above. Any closer,
and they will combine and annihilate each other.

In the present work we study the effect of the presence
of isolated defects, both dislocations and disclinations, on the
energy of a 2D cluster, and the interaction of pairs of defects.

3. Simulation method

We simulate large polygonal foam clusters [31], consisting of
N bubbles of unit area, almost all of which are hexagonal. The
clusters consist of a central bubble with n sides surrounded
by s shells of hexagonal bubbles, and therefore have n-fold
symmetry. In addition to the central defect, there are n four-
sided bubbles at the outer ‘corners’ of the cluster. All other
internal bubbles have six neighbours, but due to the strain in
the foam induced by the defects the bubbles neighbouring the
defects are no longer regular hexagons.

The clusters are constructed from a Voronoi partition
of an array of points. Defects are introduced by removing
points from an ordered array. The resulting partition is then
imported into the Surface Evolver [32] and the surface energy
E (equivalent to total perimeter) is minimized.

An isolated disclination in a cluster was formed by
creating a central bubble with n sides (n �= 6), surrounded
by s shells of hexagonal bubbles. We define the strength of the
disclination to be P = n − 6. Examples are shown for n = 5
and 7 disclinations in figure 1. Disclinations with n = 8 and 9
were also considered.

Clusters containing pairs of disclinations were formed by
joining two of these clusters, containing central bubbles with
n1 and n2 sides, and eliminating a certain number of bubbles
between the two disclinations to vary the separation d between
their centres. This introduces two seven-sided bubbles at the
5 We believe the factor of π2 in the denominator of equation (21) in [23] to
be in error.
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Figure 1. Examples of clusters with isolated disclinations for n = 5 (N = 4101, s = 40 shells) and n = 7 (N = 5741, s = 40 shells).

Figure 2. Examples of clusters with a single 5/7 dislocation (N = 1925, s = 25 shells) and a pair of 5/7 dislocations (N = 1261, s = 20
shells) in a six-fold symmetric cluster.

Figure 3. Examples of clusters with pairs of separated disclinations for n1 = n2 = 5 (N = 3252, s = 25 shells, d ≈ 42) and n1 = 5, n2 = 7
(N = 2740, s ≈ 25 shells, d ≈ 30).

periphery of a cluster, one at each end of the join, which
we presume does not change the interaction between the two
centralized defects. We considered pairs of disclinations of the
same strength (n1 = n2 = 5 or 7) or opposite (n1 = 5 and
n2 = 7). Examples are shown in figure 3.

A 5/7 dislocation is constructed from a hexagonal cluster
(n = 6) by removing a wedge of bubbles originating at the
centre (figure 2). To simulate pairs of dislocations we again
start from a hexagonal cluster and perform a single topological
change on an edge near the centre [15]. This allows us to
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study the special case in which the two dislocations have
opposite sign and are in the same glide plane (figure 2). To
change the distance between the defects, we perform further
topological changes. The Burgers vector of a dislocation is the
vector between adjacent hexagons, parallel to the 5/7 edge,
which defines the direction of gliding. The two dislocations of
figure 2 have opposite Burgers vectors, i.e. have opposite signs,
but share the same glide plane.

4. Results

4.1. Disclinations

The energy (or perimeter) per unit area (i.e. per bubble), Ê =
E/N , decreases as the number of shells (bubbles) increases
for given n, as shown in figure 4(a). For given s, Ê is least for
n = 6. In fact, the data is described very well by the following
two-parameter fits:

Ê5(N) = 1.868 98 + 1.901 72N−1/2,

Ê6(N) = 1.861 71 + 1.906 25N−1/2,

Ê7(N) = 1.867 01 + 1.925 38N−1/2,

(7)

which are also shown in figure 4(a). Note the value 1.86 that
recurs—it is close to half the perimeter of a regular hexagon of
unit area in an infinite honeycomb, since each side is shared
between two bubbles. This means that the second term of
each expression for the energy can be regarded as an excess
energy that reflects the effect of the topology of the defect on
the external boundary of the cluster, as will be discussed.

The energy of a bubble cluster can be expressed as a
sum of the bubble areas Ai and pressures pi [33]: E =
2
∑

Ai pi , relative to an external pressure taken as zero. In the
monodisperse case considered here, we therefore find that the
average pressure is 〈p〉 = 1

2 Ê , so that the average pressure in a
cluster containing a single disclination decreases in the manner
shown in figure 4(a).

The individual bubble pressures vary significantly about
the average, however. The pressure of the central bubble is
strongly correlated with n, and varies only weakly with N
(figure 5(a)). For n � 5, P � −1 the bubble pressure is
highest at the centre of the cluster, while for n � 7, P � +1 it
is higher at the periphery, as can be seen in figures 5(b) and (c).

The energy per unit area in a cluster containing two
disclinations is shown in figure 4(b). It decreases in much
the same way as for clusters containing a single disclination,
showing a similar dependence on the cluster size, N .

4.2. Dislocations

The energy per unit area in an approximately six-fold cluster
with a 5/7 defect at the centre is shown in figure 4(a). The
energies of this type of defect are close to the value for a defect-
free (hexagonal) cluster, suggesting that the 5/7 dislocation has
a lesser cost than a disclination as would be the case in a solid
crystal.

This is confirmed by the energy of a pair of dislocations
a distance d apart (figure 4(b)): the dependence on d is

Figure 4. Energy per unit area, Ê , for all clusters. (a) Clusters with
isolated disclinations for n = 5–9; the lines are fits to the form N−1/2

for n = 5, 6, 7, and the horizontal line is half the perimeter of a
regular hexagon of unit area. Also shown are clusters with 5/7
dislocations. (b) Clusters with pairs of defects separated by different
distances d . The continuous lines are the fits shown in (a). Points
joined by lines are for the same number of shells s. The energy of a
pair of dislocations varies relatively little with d and is shown as a
single point.

not significant compared to the dependence on N , and the
energy/unit area is close to the value for a defect-free cluster.

The pressure distribution in a dislocation cluster is shown
in figure 5(d): the average pressure in each shell is much
the same as for a defect-free cluster (n = 6), but the scatter
in pressures increases to a maximum close to the centre of
the cluster. The two become coincident about 15 shells from
the centre of the cluster, giving a measure of the ‘screening
length’ [34].

5. Discussion

5.1. Disclinations

The variation of Ê with N may be interpreted as follows. Exact
calculations for clusters with disclinations and different areas
predict that the energy of a cluster is [35]

E = 3.72

2

∑
i

A1/2
i + 2.04

(∑
i

Ai

)1/2

, (8)

in terms of the bubble areas Ai . The second term of the
equation is related to the shape of the cluster boundary, and
2.04 corresponds to a rounded cluster. For clusters with regular
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Figure 5. (a) Pressure in the central bubble of a cluster containing a single disclination. The pressure depends strongly on the value of n, but
weakly on the size of the cluster. (b)–(d) Bubble pressure as a function of radial distance from the centre of the cluster, and the average
pressure in each shell (error bars show standard deviation) for clusters with (b) n = 5 disclination, s = 40, N = 4101, (c) n = 7 disclination,
s = 40, N = 5741, (d) n = 6 disclination, s = 25, N = 1951 and 5/7 dislocation, s = 25, N = 1926. Notice the change of slope for n = 5
versus n = 7 and that the dislocation introduces only a local perturbation of the pressures compared to the hexagonal case.

hexagonal boundary the factor 2.04 decreases to 1.94 [35]. For
clusters with unit area this leads to

Ê = E

N
= 1.86 + 1.94N−1/2. (9)

This is in accordance with our findings (section 4.1,
equation (7) and figure 4), although it does not distinguish
between clusters with different n, i.e. it does not take topology
into account.

For isolated disclinations of strength P in a 2D foam the
energy density should be determined by equation (3). This is
the excess energy density relative to the energy of a perfect
hexagonal 2D foam (w = 0 if P = 0). In order to compare the
energy of isolated defects in foams, we propose to calculate w

as
w = Ê − Ê6(N), (10)

where Ê is the total perimeter per unit area obtained in the
simulations, see figure 6(a). Equation (3) implies that the
energy density for an n = 5 disclination (P = 1) is the same as
for an n = 7 disclination (P = +1), for the same radius, which
is indeed seen to be approximately the case, but the magnitude
of w is only about half of that predicted.

For paired disclinations a distance d apart, we define the
strain (excess) energy in a similar way by subtracting the

energy of a joined cluster without defects. The number of rows
of bubbles that are removed when the clusters are joined varies
as s −d , where s is the number of shells. We therefore propose
the following expression:

w = Ê − Ê6(N ′) with N ′ = N + k1s(k2s − d) (11)

where k1 and k2 are two fitting parameters extracted from the
case n1 = n2 = 6; we find k1 = 1.1 and k2 = 0.5. This
should take into account the shape of two joined clusters and
the presence of two extra defects at the end of the line where
they join.

Figure 6(b) shows that n1 = n2 = 5 and n1 = n2 = 7
have similar strain energies, which decrease, as expected, as
the separation of the like defects becomes greater.

The energy density of two disclinations of opposite
strengths in a nematic liquid crystal is predicted to depend on
their separation d through equation (2). We hypothesize that
the energy density of two disclinations in a 2D foam has a
similar functional form: assuming that the defect core is the
size of the central bubble of area A, we take a = √

A = 1 and
write

w = M P2 ln

(
d√
A

)
, (12)
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Figure 6. (a) Excess (strain) energy w = Ê − Ê6(N), for all clusters
with isolated disclinations for n = 5–7 and a 5/7 dislocation. The
horizontal line is the value given by equation (3) for bubbles of unit
area and P = ±1. (b) Excess (strain) energy w = Ê − Ê6(N ′) for
clusters with pairs of disclinations. Points joined by lines are for the
same number of shells s. Also shown is a logarithmic fit to the data
for n1 = 5, n2 = 7, s = 19. All data converge to the values for a
single disclination, shown in (a).

where M is an elastic constant. The case n1 = 5, n2 =
7, shown in figure 6(b), certainly increases with d , and a
logarithmic fit with M = 2.5 × 10−3 seems reasonable.

5.2. Dislocations

The Burgers vector of the dislocation of figure 2 can be related
to a0, the edge length of a bubble with area A, to give B =√

3a0, which is the smallest possible component of the vector
in a hexagonal cell, equivalent to the centre-to-centre distance
between bubbles. Thus for a hexagonal foam containing
bubbles of unit area we have B = 1.074. Equation (5) gives
the energy density of a dislocation cluster of size r in an infinite
honeycomb. Although it was derived for a cylindrical body,
we take r as the radius of a circle with perimeter equal to the
perimeter L of the periphery of the cluster, so that r ∼ √

N .
Figure 7 shows that the energy density decreases with the

radial size of the cluster as 1/rα with α = 1.88 ± 0.24; this is
not far from α = 2 as predicted by equation (5), although the
prefactor appears to be out by a factor of 4.

For paired dislocations a distance d apart (figure 2, right),
we calculate the strain energy by subtracting the energy of the
same (hexagonal) cluster without defects, shown in figure 7(b).
The strain energy increases almost logarithmically with d ,

Figure 7. (a) Excess (strain) energy w = Ê − Ê6(N), for a 5/7
dislocation. The data fit to r−α with α = 1.88 ± 0.24, which is
consistent with the functional dependence given by equation (5).
(b) Excess energy for two 5/7 dislocations a distance d apart. The
result for a finite 6-fold cluster of N = 1261 bubbles is compared
with the prediction of equation (6) and the result for an infinite
honeycomb and its logarithmic fit.

according to equation (6), shown in figure 7(b). In this case it is
possible to compare the data with the same defects embedded
in an infinite (periodic) hexagonal foam, eliminating the effect
of the cluster boundaries. The a posteriori confirmation that
the boundaries do not have a large effect on the interaction
between defects is apparent from the proximity of the lines in
figure 7(b). The strain energy in the hexagonal foam is fit better
by a function of the form ln(kd + 1)

6. Conclusion

This work describes simulations of 2D finite aqueous foam
clusters containing topological defects. The presence of one
defect, in particular a disclination, clearly affects the energy
and the pressure of the cluster. The energy per bubble of a
disclination cluster deviates from the energy of a defect-free
cluster if the number of sides of the central cell is different
from six, and decreases as the number of shells increases. Both
the energy and the pressure of a cluster with n = 6 match very
well with those found for a 5/7 dislocation cluster. In fact, the
average pressure in each shell is the same in the two cases.

Many processes, such as plastic deformation, deal with
the interactions between defects. Our simulations of pairs
of defects reveal how the presence of one defect is ‘felt’ by
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the other defect as a function of their separation. Analytic
approaches have been developed, in the context of solids or
of liquid crystals, for the same cases as studied here. For
most of them defects in foams follow the predicted trends.
For example, the energy of two disclinations with opposite
strengths a distance d apart appears to be proportional to ln d .

Nonetheless, a perfect match between analytical results
and simulations is not to be expected, as the assumptions
under which the former were derived are not always satisfied
in the systems considered here. Clusters with n = 5 and
7 are examples of this: because these disclinations have the
same strength (in absolute value), one would expect that they
would have the same energy, yet the two clusters have different
boundaries, and it is clear that the energy of a cluster is strongly
dependent on boundary shape. Further work still needs to be
undertaken to fully separate the contributions of defect shape
and cluster shape to the energy of a foam.
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